Selasa, 12 Februari 2013

TEORI ATOM DAN MOLEKUL


Operasi komponen elektronika benda padat seperti dioda, LED, Transistor Bipolar dan FET serta Op-Amp atau rangkaian terpadu lainnya didasarkan atas sifat-sifat semikonduktor. Semikonduktor adalah bahan yang sifat-sifat kelistrikannya terletak antara sifat-sifat konduktor dan isolator. Sifat-sifat kelistrikan konduktor maupun isolator tidak mudah berubah oleh pengaruh temperatur, cahaya atau medan magnit, tetapi pada semikonduktor sifat-sifat tersebut sangat sensitive. Elemen terkecil dari suatu bahan yang masih memiliki sifat-sifat kimia dan fisika yang sama adalah atom. Suatu atom terdiri atas tiga partikel dasar, yaitu: neutron, proton, dan elektron. Dalam struktur atom, proton dan neutron membentuk inti atom yang bermuatan positip, sedangkan elektron-elektron yang bermuatan negatip mengelilingi inti. Elektron-elektron ini tersusun berlapis-lapis. Struktur atom dengan model Bohr dari bahan semikonduktor yang paling banyak digunakan adalah silikon dan germanium. Seperti ditunjukkan pada Gambar 1 atom silikon mempunyai elektron yang mengorbit (mengelilingi inti) sebanyak 14 dan atom germanium mempunyai 32 elektron. Pada atom yang seimbang (netral) jumlah elektron dalam orbit sama dengan jumlah proton dalam inti. Muatan listrik sebuah elektron
adalah: - 1.602-19 C dan muatan sebuah proton adalah: + 1.602 - 19 C.

Elektron yang menempati lapisan terluar disebut sebagai
elektron valensi. Atom silikon dan germanium masing mempunyai empat elektron valensi. Oleh karena itu baik atom silikon maupun atom germanium disebut juga dengan atom tetra-valent (bervalensi empat). Empat elektron valensi tersebut terikat dalam struktur kisi-kisi, sehingga setiap elektron valensi akan membentuk ikatan kovalen dengan elektron valensi dari atom-atom yang bersebelahan. Struktur kisi-kisi kristal silikon murni dapat digambarkan secara dua dimensi pada Gambar 2 guna memudahkan pembahasan.
                          
Meskipun terikat dengan kuat dalam struktur kristal, namun bisa saja elektron valensi tersebut keluar dari ikatan kovalen menuju daerah konduksi apabila diberikan energi panas. Bila energi panas tersebut cukup kuat untuk memisahkan elektron dari
ikatan kovalen maka elektron tersebut menjadi bebas atau disebut dengan elektron bebas. Pada suhu ruang terdapat kurang lebih 1.5 x 1010 elektron bebas dalam 1 cm3 bahan silikon murni (intrinsik) dan 2.5 x 1013 elektron bebas pada germanium. Semakin besar energi panas yang diberikan semakin banyak jumlah elektron bebas yang keluar dari ikatan kovalen, dengan kata lain konduktivitas bahan meningkat.




Semikonduktor Tipe N
Apabila bahan semikonduktor intrinsik (murni) diberi (didoping) dengan bahan bervalensi lain maka diperoleh semikonduktor ekstrinsik. Pada bahan semikonduktor intrinsik, jumlah elektron bebas dan holenya adalah sama. Konduktivitas semikonduktor intrinsik sangat rendah, karena terbatasnya jumlah pembawa muatan yakni hole maupun elektron bebas tersebut. Jika bahan silikon didoping dengan bahan ketidak murnian (impuritas) bervalensi lima (penta-valens), maka diperoleh semikonduktor tipe n. Bahan dopan yang bervalensi lima ini misalnya antimoni, arsenik, dan pospor.

Karena atom antimoni (Sb) bervalensi lima, maka empat elektron valensi mendapatkan pasangan ikatan kovalen dengan atom silikon sedangkan elektron valensi yang kelima tidak mendapatkan pasangan. Oleh karena itu ikatan elektron kelima ini dengan inti menjadi lemah dan mudah menjadi elektron bebas. Karena setiap atom depan ini menyumbang sebuah elektron, maka atom yang bervalensi lima disebut dengan atom donor. Dan elektron “bebas” sumbangan dari atom dopan inipun dapat dikontrol jumlahnya atau konsentrasinya. Meskipun bahan silikon type n ini mengandung elektron bebas (pembawa mayoritas) cukup banyak, namun secara keseluruhan kristal ini tetap netral karena jumlah muatan positip pada inti
atom masih sama dengan jumlah keseluruhan elektronnya. Pada bahan type n disamping jumlah elektron bebasnya (pembawa mayoritas) meningkat, ternyata jumlah holenya (pembawa minoritas) menurun. Hal ini disebabkan karena dengan bertambahnya jumlah elektron bebas, maka kecepatan hole dan elektron ber-rekombinasi (bergabungnya kembali elektron dengan hole) semakin meningkat. Sehingga jumlah holenya menurun. Level energi dari elektron bebas sumbangan atom donor dapat digambarkan seperti pada Gambar 4. Jarak antara pita konduksi dengan level energi donor sangat kecil yaitu 0.05 eV untuk silikon dan 0.01 eV untuk germanium. Oleh karena itu pada suhu ruang saja, maka semua elektron donor sudah bisa mencapai pita konduksi dan menjadi elektron bebas.
                                      
          Bahan semikonduktor tipe n dapat dilukiskan seperti pada Gambar 5. Karena atom-atom donor telah ditinggalkan oleh elektron valensinya (yakni menjadi elektron bebas), maka menjadi ion yang bermuatan positip. Sehingga digambarkan dengan tanda positip. Sedangkan elektron bebasnya menjadi pembawa mayoritas. Dan pembawa minoritasnya berupa hole.


Semikonduktor Tipe P

Apabila bahan semikonduktor murni (intrinsik) didoping dengan bahan impuritas (ketidak-murnian) bervalensi tiga, maka akan diperoleh semikonduktor type p. Bahan dopan yang bervalensi tiga tersebut misalnya boron, galium, dan indium. Struktur kisi-kisi kristal semikonduktor (silikon) type p adalah seperti Gambar 6. Karena atom dopan mempunyai tiga elektron valensi, dalam Gambar 6 adalah atom Boron (B) , maka hanya tiga ikatan kovalen yang bisa dipenuhi. Sedangkan tempat yang seharusnya membentuk ikatan kovalen keempat menjadi kosong (membentuk
hole) dan bisa ditempati oleh elektron valensi lain. Dengan demikian sebuah atom bervalensi tiga akan menyumbangkan sebuah hole. Atom bervalensi tiga (trivalent) disebut juga atom akseptor, karena atom ini siap untuk menerima elektron. Seperti halnya pada semikonduktor type n, secara keseluruhan kristal semikonduktor type n ini adalah netral. Karena jumlah hole dan elektronnya sama. Pada bahan type p, hole merupakan pembawa muatan mayoritas. Karena dengan penambahan atom dopan akan meningkatkan jumlah hole sebagai pembawa muatan. Sedangkan pembawa minoritasnya adalah elektron.

Level energi dari hole akseptor dapat dilihat pada Gambar 7. Jarak antara level energi akseptor dengan pita valensi sangat kecil yaitu sekitar 0.01 eV untuk germanium dan 0.05 eV untuk silikon. Dengan demikian hanya dibutuhkan energi yang sangat kecil bagi elektron valensi untuk menempati hole di level energi akseptor.  Oleh karena itu pada suhur ruang banyak sekali jumlah hole di pita valensi yang merupakan pembawa muatan. Bahan semikonduktor type p dapat dilukiskan seperti pada Gambar 8. Karena atom-atom akseptor telah menerima elektron, maka menjadi ion yang bermuatan negatip. Sehingga digambarkan dengan tanda negatip. Pembawa mayoritas berupa hole dan pembawa minoritasnya berupa elektron.







RESISTOR

Resistor disebut juga dengan tahanan atau hambatan, berfungsi untuk menghambat arus listrik yang melewatinya. Satuan harga resistor adalah Ohm. ( 1 MW (mega ohm) = 1000 KW (kilo ohm) = 106 W (ohm)).
Resistor terbagi menjadi dua macam, yaitu :

ü Resistor tetap yaitu resistor yang nilai hambatannya relatif
tetap, biasanya terbuat dari karbon, kawat atau paduan
logam. Nilainya hambatannya ditentukan oleh tebalnya dan
panjangnya lintasan karbon. 





ü  Resistor variabel atau potensiometer, yaitu resistor yang besarnya hambatan dapat diubah-ubah. Yang termasuk kedalam potensiometer ini antara lain : Resistor KSN (koefisien suhu negatif), Resistor LDR (light dependent resistor) dan Resistor VDR (Voltage Dependent Resistor). 
                        

Menentukan Kode Warna pada Resistor

Kode warna pada resistor menyatakan harga resistansi dan toleransinya. Semakin kecil harga toleransi suatu resistor adalah semakin baik, karena harga sebenarnya adalah harga yang tertera ± harga toleransinya.


Contoh :
Sebuah resistor dengan 4 gelang. Gelang pertama cokelat, gelang kedua cokelat, gelang ketiga orange dan gelang keempat emas. Tentukan nilai tahanan resistor ! Nilai Resistor tersebut :
Gelang 1 (cokelat) =1; Gelang 2(cokelat)=0; Gelang 3(orange)=
103 ; Gelang 4 (emas) = 5 % Sehingga nilai tahanan resistor adalah 10 x 103 W ± 5 % atau 10 K W dengan toleransi 5 %

Kode Huruf Resistor

Resistor yang mempunyai kode angka dan huruf biasanya adalah resistor lilitan kawat yang diselubungi dengan keramik/porselin,

Arti kode angka dan huruf pada resistor dengan kode 5 W 22 R J adalah sebagai berikut :
5 W berarti kemampuan daya resistor besarnya 5 watt
22 R berarti besarnya resistansi 22 W Dengan besarnya toleransi 5%

Kapasitor

Kapasitor atau kondensator adalah suatu komponen listrik yang dapat menyimpan muatan listrik. Kapasitas kapasitor diukur dalam F (Farad) = 10-6 mF (mikro Farad) = 10-9 nF (nano Farad) = 10-12 pF (piko Farad). Kapasitor elektrolit mempunyai dua kutub positif dan kutub negatif (bipolar), sedangkan kapasitor kering misal kapasitor mika, kapasitor kertas tidak membedakan kutub positif dan kutub negatif (non polar). 

    

Tidak ada komentar:

Posting Komentar